Wednesday, September 4, 2013

Learning Programming

Two years ago, I wrote a post on "learning Python" to launch this blog dedicated to Python. While useful, it doesn't address beginners' needs as much, so it's time for a revisit. Because Python is such a user-friendly language for beginners, I'm often asked whether Python is the "best first language" for those new to programming. While tempted to respond in the affirmative, my answer really is, "it depends." It depends on your experience, age, level of exposure, etc.

Yes, there are indeed plenty of resources out there, such as courses from online learning brands such as Khan Academy, Udacity, Coursera, Codecademy, CodeSchool, and edX, but most certainly don't come with an instructor, instead relying on live or recorded videos and possibly supplemental study groups, or "cohort learning," as a colleague of mine has branded it. Whatever the mechanism, it's surely better than pure online tutorials or slaving away over a book, neither of which come with instructors either.

Stepping back a bit, before jumping into hardcore C/C++, Java, PHP, Ruby, or Javascript lessons, for learning tools that are used in industry today, there are better stepping stones to get you there. You may be a kid or a professional who either doesn't code much or had done so long ago. You're say that type of user who is "insulted" by the move "left" or "right" commands for controlling a turtle, say, and desire something more complex. The good news is that there are tools out there, more which allow you to venture further without an instructor.

One of them is Scratch, a "jigsaw puzzle"-like programming language created at MIT (or Tynker or Blockly, Scratch-like derivatives). Yes, you will do left, right, up, down, etc., but you'll also get to play audio, video, repeat commands, draw graphics, and make sounds. This tool is great for teaching the young learner, who don't need any of the advanced features but which are available for when they're ready to take the next step. It can be used to teach children the concepts of programming without all the syntax that text-based programming languages feature which may make learning those concepts a burden.

If you wish to proceed, go to the website to get started. They've got videos there as well as projects you can copy. As you can see, you snap together puzzle pieces that teach you coding. Better yet, to get started even more quickly, clone one (or more) of the projects, and "tweak" the code a bit to "do your own thing." In time, you may even develop your own fun applications or real games. Another similar graphical learning tool to consider is Alice from the University of Virginia and now Carnegie-Mellon University.

Once you're comfortable with that type of working environment, there's a similar tool from MIT called App Inventor. Leverage your Scratch skills and start building applications that run on Android devices! There's an emulator, so you don't really need an Android device, but it's certainly more rewarding when you can use an app that you built running on a tablet or phone! (Try a family friend who may have an old device they don't use any more.)

Once you're to move beyond block-like languages, there are 2 good choices (or better yet, do both!). One of which the de facto language of the web: Javascript. Unfortunately, there are so many online tutorials out there, I wouldn't know which to suggest, so looking forward to your comments below. The ones which are the most effective however, have you learning then coding directly into the browser and seeing results immediately, requiring you to write successful Javascript before allowing you to move on.

The thing about Javascript is that code typically only runs within the browser, to control web pages (i.e., "DOM manipulation") and actions you can take on a single page -- it can also be AJAX code that makes an external call to update a page without requiring a page load. Nevertheless, browser-only execution can be somewhat limiting, so there are now 2 additional ways you can use it.

One is to write "server-side" applications via Node.js. This type of Javascript allows you to write code that executes on the remote machine serving your web pages (generally) after you've entered information in a form and clicked submit. For every web page that users see and interact with, there's also got to be code on the server side that does all the work! This code will also end up returning the final HTML that users see in their browsers once the form has been submitted and results returned.

Another place you can use Javascript is in Google's cloud. The tool there is called Google Apps Script. Using Apps Script, you can create applications that interact with various Google Apps, automate repetitive tasks, or write glue code that lets you connect and share data between different Google services. Try some of their tutorials to get started!

The other option besides Javascript is Python. No doubt you already know what it is since you're here. Python's syntax is extremely approachable for beginners and is widely considered "executable pseudocode." That's right, a programming language that doesn't require you have a Computer Science degree to make good use of it! It's also one of those rare languages that can be used by adults in the professional world as well as by kids learning how to code. Sure there are many online learning systems out there, a sampling of which are here:
See if you like any of them or have your new coder friends try them out. However, I think kids (and even adults) learn programming best when they get to write cool games (leveraging the amazing PyGame library). There are several books written just for kids, including "Hello World" which was actually written by an engineer and his son! Along with that book there are two more you should consider:
Two of the three books above are in the beginners list I created over a year ago along with two other Python reading lists in this post. (The third book should be added to the list as well.) Those of you who are already programmers probably know which one I would recommend. :-) Seriously though, those reading lists show that I can toot other horns too. :P

Here are other online projects and learning resources, including book websites, that you can also try (many are for kids):
In conjunction with a good learning system, book, or project-based learning above, you should also try out one of many free online courses to validate things you've picked up but to also build other knowledge you haven't learned yet. There are a pair from Coursera and one from Udacity:
For existing programmers who are still questioning why Python, check out Udacity's motivational blogpost.

That's it! Hopefully I've given you enough resources you can pass along to friends and family members who are intrigued by your passion for computer programming and wish to see what all the excitement is all about. A young man I met on vacation this summer motivated this post... good luck Mitchell! I hope to see the rest of you on the road as well, perhaps at a developers' conference or sitting in one of my upcoming Python courses!

2 comments:

  1. Thanks for writing this article, what age do you ink would be appropriate for kids to begin?

    ReplyDelete
    Replies
    1. The "Hello World" book was written by an engineer and his (then) 8-year old son. That's probably the youngest I'd introduce a kid to Python. Any younger, I'd lean towards Scratch and Alice first. Again, it's all about the concepts. Once they see a pictorial loop, the for-loop will be a snap. Anyone else care to comment on this? When did *your* kids get started with coding? However, you could also take a page out of Estonia's book and start earlier: http://google.com/search?q=estonia+children+code+OR+program+OR+programming. Their program involves robotics, so I think Lego MindStorms can go on the list above somewhere. One reason why MIT switched their freshman courses from Scheme to Python was due to a robotics library. You can perhaps to a certain extent, MineCraft to the above list as well.

      Delete